
strlang Reference 1

Strlang language Reference Manual

strlang is a simple imperative programming language, designed specifically to make
manipulating text strings easy. The language features a minimalistic syntax and includes
support for a variety of string-oriented operations including matching and substituting
regular expressions. While taking syntactic cues from Perl and other more traditional text
processing languages, strlang is a compiled language and offers native performance and
full static semantic checking.

3.1 Lexical conventions

strlang has five types of tokens: names, number constants, string constants, operators, and
punctuation. The language does not have any keywords.

Names are any sequence of one or more alphabetic (upper and lower-case), numeric or _
characters. The first character must be alphabetic. Names are case sensitive. A small
number of names are reserved for use as built-in functions and may not be used for other
purposes: open, read, end_input, write, to_num, to_string and exit.

A number constant is any sequence of one or more integer characters. As a practical
matter, integer constants are limited to 2^31.

A string constant is a sequence of characters surrounded by double quotes. C-style
escape characters are used.

Operators and punctuation include: () { } [] + - * / % | & < > <= >= == != ! ^ ~
@@ @% <- -> $ # % and ;.

Whitespace, meaning spaces, tabs, carriage-returns and newlines, is ignored.

Comments are begun with the characters // and run to the end of the line. Comments are
ignored.

3.2 Types

strlang has two fundamental types of variables: strings and numbers. Strings contain text,
whereas numbers contain integer quantities. In addition to the basic types, the language
includes the map type for associating key-value pairs. strlang is a strongly typed
language, and all conversions between different types must be made explicitly.

Strings $

Text strings are the bread and butter of strlang. Strings are sequences of ASCII character
values. Regular expressions are no different than other strings, and are interpreted only
in the context of searching and replacement. They use the extended Perl syntax. String
operators include concatenation, substring creation, searching, matching and replacing.

strlang Reference 2

Numbers #

Number variables are included to allow for integer and boolean arithmetic. Numbers are
signed 32-bit integer quantities. They support the five standard integer arithmetic
operators, as well as comparison, and boolean connectors. In a boolean context, the value
zero is treated as false, and all other values are treated as true.

Maps %[t1 ; t2]

Maps are the only aggregate type in strlang. Maps are sets of key-value pairs. Only a
single value may be associated with each key. When a map variable is defined, the types
of its keys and values must also be defined. Keys and values may be strings or numbers,
but must be homogeneous. Accordingly, there are four types of maps: number-to-
number, number-to-string, string-to-number and string-to-string.

Map operations include insertion of a key-value pair, lookup of a value by key, deletion
of a key-value pair by key and two special operators used to extract all the values or keys
in a map to be used as values in a new map with number keys. Note that maps with
differing key or value types are considered to be of different types.

None ^

Certain expressions have no value associated with them. Their type is consequently
considered to be 'none'. Variables of this type cannot be explicitly created.

Type Name Notes

$ String Text strings.
Number Signed integer quantities.

%[k;v] Map (k-to-v) Set of key value pairs. k and v can be either $ or #. The
map has keys of type k and values of type v.

^ None Used to indicate functions with no parameters, or no return
value.

3.3 Expressions

Operator Precedence and Associativity

Precedence and associativity of the various operators in strlang is given below, ordered
from lowest to highest precedence.

Operator Associativity Notes

<- Right to Left Assignment. Requires identical type operands (no implicit
conversion).

| Left to Right Logical or |. No short-circuit evaluation.

strlang Reference 3

& Left to Right Logical and &. No short-circuit evaluation.
== != Left to Right Structural equality == and inequality !=.
< > <=

>=
Left to Right Numeric comparison for numbers, lexicographic

comparison for strings.
+ - Left to Right Addition + and subtraction - for numbers, concatenation +

and substring - for strings, deletion - for maps.
* / % Left to Right Multiplication *, division / and modulus % for numbers,

match / and index % for strings.
~~ Left to Right Replacement for strings (ternary operator).

- ! ^ Left to Right Arithmetic - and logical negation ! for numbers, length ^
for strings and maps.

[] Left to Right Accessor for maps.
@% @@ Right to Left Keys @% or values @@ for maps.

3.3.1 String Expressions

String Constants "[^\"]*"

Returns the string containing the text between the double-quote symbols.

 a <- "str const"; // string variable 'a' now contains 'str const'

Concatenation $ '+' $

Returns the concatenation of the two string operands.

 a <- "hello " + "world"; // 'a' now contains 'hello world'

Substring $ '-' #

Returns a substring of the first operand. If the second operand is non-negative, these are
the characters of the first operand starting at position n (n being the second operand).
Otherwise, these are the characters of the first operand except for the last |n|.

 a <- "hello world" - 6; // 'a' now contains 'world'
 a <- "hello world" - -6; // 'a' now contains 'hello'

Match $ '/' $

Return the first substring in the first operand that matches the second operand. If there is
no match, an empty string is returned. The second operand will be interpreted as a
regular expression, so special symbols will need to be escaped if they are to be
interpreted as literals.

 a <- "hello world." / "world"; // 'a' now contains 'world'
 a <- "hello world." / "h[e-l]*o"; // 'a' now contains 'hello'
 a <- "hello world." / "."; // 'a' now contains 'h'

strlang Reference 4

 a <- "hello world." / "\\."; // 'a' now contains '.'

Index $ '%' $

Return the position in the first operand of the first match for the second operand. If there
is no match, the value -1 is returned. As with match, the second operand will be
interpreted as a regular expression.

 i <- "hello world" % "world"; // 'i' now contains '6'
 i <- "hello world" % "h[e-l]*o"; // 'i' now contains '0'
 i <- "hello world" % "world."; // 'i' now contains '-1'

Replace $ '~' $ '~' $

Return a string consisting of the first operand, with all occurrences of the second operand
replaced by the third operand. The second operand will be interpreted as a regular
expression.

 a <- "hello world" ~ "[eo]" ~ "x"; // 'a' now contains 'hxllx wxrld'
 a <- "hello world" ~ "world" ~ ""; // 'a' now contains 'hello '

Length '^' $

Return the length of the operand - the number of ASCII characters in the string.

 i <- ^ "hello world"; // 'i' now contains '11'

Comparison $ '<' $ or $ '>' $ or $ '<=' $ or $ '>' $

Return 1 if the first operand is lexicographically less than, greater than, less than/equal or
greater than/equal to the second operand. Otherwise return 0.

 i <- "hello" < "helloo"; // 'i' now contains '1'
 i <- "hello" > "helloo"; // 'i' now contains '0'
 i <- "hello" >= "hello"; // 'i' now contains '1'

3.3.2 Number Expressions

Number Constants [0-9]+

Returns a number containing the integer value in the expression.

 i <- 7; // 'i' now contains '7'

Addition # '+' #

Returns the sum of the two operands.

strlang Reference 5

 i <- 7 + 4; // 'i' now contains '10'

Subtraction # '-' #

Returns the difference of the two numbers.

 i <- 7 - 3; // 'i' now contains '4'

Multiplication # '*' #

Returns the product of the two numbers.

 i <- 7 * 3; // 'i' now contains '21'

Division # '/' #

Returns the whole-number quotient of the two numbers. If the value of the second
operand is 0, a runtime error will occur.

 i <- 7 / 3; // 'i' now contains '2'
 i <- 7 / 0; // runtime error

Modulus # '%' #

Returns the remainder of the two numbers. If the value of the second operand is 0, a
runtime error will occur.

 i <- 7 % 3; // 'i' now contains '1'
 i <- 7 % 0; // runtime error

Boolean Connectors # '|' # or # '&' #

Returns the logical disjunction or conjunction of the two operands. Evaluation is not
short-circuited, meaning both operands are always evaluated.

 i <- 0 | 1; // 'i' now contains '1'
 i <- 1 & 0; // 'i' now contains '0'
 i <- 0 & (0 / 0); // runtime error, even though 0 is first operand

Comparison # '<' # or # '>' # or # '<=' # or # '>=' #

3.3.3 Map Expressions

Accessor % '[' $ ']' or % '[' # ']'

Return the value for the key given as the second operand, in the map given as the first
operand. The type of the second operand must match the type of the map's keys. If the

strlang Reference 6

key is not found, zero or the empty string are returned, depending upon whether the map's
values are numbers or strings.

 s <- ms["hi"]; // 's' now contains the value associated with 'hi' in 'ms'
 i <- mn[3]; // 'i' now contains the value associated with '3' in 'mn'

Deletion % '-' $ or % '-' #

Delete the key-value pair associated with the key given as the second operand and the
map given as the first operand. Return that value.

 s <- ms - "hi";
 // 's' has same value as above example, but 'ms' no longer contains
 // the given pair

Emptying % '<-' '0'

Empty the map given as operand of all key-value pairs, and return the same empty map.

 empty <- ms <- 0; // 'ms' and 'empty' are now both maps with no contents

Length '^' %

Return the number of key-value pairs in the map.

 i <- ^m; // 'i' contains the number of keys in m

Keys '@%' %

Return a new map containing the keys of the map given as the operand. The new map's
values are the keys of the old map. The new map's keys are numbers, zero through the
size of the map.

 keys <- @% m; // 'keys' contains the keys of 'm' as its values

Values '@@' %

Return a new map containing the values of the map given as the operand. The new map's
values are the values of the old map. The new map's keys are numbers, zero through the
size of the map.

 vals <- %% m; // 'vals' contains the values of 'm' as its values

3.3.4 General Expressions

Lvalues name

strlang Reference 7

Lvalues are simply variables. They can both be read from and assigned to. They return
the value stored in the given variable. As there are no implicit type conversions, the type
of the return value is simply the same as the type of the variable.

Equality/Inequality expr '==' expr or expr '!=' expr

Return the number 1 if the two expressions are structurally equal, and 0 otherwise.
Strings, numbers and maps may be compared, but both operands must be of the same
type.

 i <- 1 == 1; // 'i' contains 1
 i <- "s" == "S"; // 'i' contains 0

Assignment lvalue '<-' expr

Returns the value of the second operand, and also stores that value into the first operand.
Accordingly, the types of the first and second operands must be the same.

 j <- i <- 1 == 1; // 'i' and 'j' contains 1, if both i and j are # vars

Function Calls name '(' expr1 ';' expr2 ';' ... ')'

Function calls evaluated as follows: first all of the arguments (the expressions within
parenthesis) are evaluated, left-to-right. Then the function code is called and executed.
The return value is precisely the value returned by the function. In the case that the
function's return type is none, no value is returned.

Unlike variables, functions need not necessarily be declared prior to use, but the name
must have a matching declaration somewhere in the program. Moreover, the number and
types of the expressions given as arguments to the function must match with the number
and types of the parameters given in that function's declaration.

Parameters are passed by reference.

3.4 Statements

Statements comprise the bulk of a strlang program. Statements are executed in sequence.
In addition to simple expressions, statements include loop and conditional control
structures, logical code blocks, and return statements. Each type of statement is
described in detail below.

Variable Declarations type name ';'

All variables must be declared prior to use. The declaration associates a type to a given
name. The type may be any of the types given above, save for ^ (none). Unlike other
types of statements, variable declarations may only appear at the beginning of a block, or

strlang Reference 8

at the beginning of a program before any other code. Declarations not within any block
are considered global. Declarations within a block are considered local to that block.

All variables are initialized automatically. Number variables are set to zero by default,
strings to the empty string, and maps to a map containing no keys.

Expressions expr ';'

Expression statements are evaluated according to the rules described in the previous
section.

Return '->' expropt ';'

Return statements are used to stop execution of the current function and return control to
the calling function, at the place where the current function was called. The associated
expression is evaluated, and its value is given back to the caller. The type of the
expression must match the return type of the function. Functions with return type of
'none' should omit the expression portion of the statement.

Blocks '{' decl_listopt stmt_listopt '}'

Blocks are logical units of code. Blocks consist of grouping markers (curly braces)
around an optional list of variable declarations followed by an optional list of statements.
Variables declared within a block are not valid outside that block. Two variables of the
same name may not be declared in the same scope. Within a block, references to a name
are bound to the variable declared in the nearest enclosing scope.

Conditionals '[' expr ']' block or '[' expr ']' block '![]' block

In a conditional statement, the expression is first evaluated and if the result is non-zero,
the block immediately after is executed. The expression must be of type number. If the
result of evaluating the expression is zero and the conditional uses the second form, the
second block is executed.

Loops '<' expr '>' block

In a loop statement, the expression is first evaluated. If the result is non-zero, the
following block is executed and then control moves back to the top of the loop, where the
process repeats. The expression for a loop must be of type number.

3.5 Functions

Functions name '(' decl_list ')' '->' type block or
 name '(' '^' ')' '->' type block

Functions in strlang consist of a signature and a block. The signature is the name,
declaration list, and type. The declaration list indicates the names and types of the input

strlang Reference 9

parameters for the function (or ^ for none). The type indicates the kind of value that will
be returned to the caller. Finally, the block contains the actual code of the function.

Function names must be unique within a program. Variables also may not use the same
names as functions. The scope of a function is the entire program.

Variables declared in the input parameter section have the same scope as variables
declared at the top of the function's code block.

A functions with a return type other than ^ and lacking an explicit return statement will
automatically return zero, the empty string, or an empty map, in accordance with the
return type given in its signature.

3.6 Program Structure

Program decl_listopt func_list

A strlang program consists of an optional list of variable declarations, followed by a list
functions. Variables declared at the program level have program-wide scope.

Functions need not be declared in any particular order in a strlang program. However,
every strlang program is required to contain a function by the name of main with the
following signature:

 main(^) -> ^

Execution of a strlang program begins with the first statement in the code block of this
main function. The program is then executed statement-by-statement, as described
above.

3.7 Built-in Functions

strlang provides a few built-in functions to facilitate input and output and conversion
between different types.

Signature Description
open($ io_type;
 $ filename) -> ^

open() opens an input or output stream for subsequent
reads or writes.

If io_type matches "in", it will attempt to open filename for
reading and use that file for subsequent read() calls. If
filename is "stdin", it will use standard input.

If io_type match "out", it will attempt to open filename for
writing and use it for subsequent write() calls. If filename
is "stdout", it will use standard output.

read(^) -> $ read() gets the next line of input from the current input

strlang Reference 10

stream, and returns it as a string.
end_input(^) -> # end_input returns 1 if the input stream has reached the end

of input, and 0 otherwise.
write($ outstr) -> ^ write() prints the string outstr to the current output stream.
to_num($ str) -> # to_num() converts a string to a number, which it returns.
to_string(# num) -> $ to_string() converts a number to string, which it returns.
exit(^) -> # exit() terminates the current program, returning the given

number value to the calling environment.

3.8 Syntax Summary

program:
 decl_list func_list func

decl_list:
 /* empty */
 decl_list decl ;

func_list:
 /* empty */
 func_list func

func:
 name (formals_list_opt) -> ret_type block

decl:
 type name

type:
 $ /* string */
 # /* number */
 %[$; $] /* map from string to string */
 %[$; #] /* map from string to number */
 %[#; $] /* map from number to string */
 %[#; #] /* map from number to number */

formals_list_opt:
 ^ /* void - empty argument list */
 formals_list

formals_list:
 decl
 decl ; formals_list

ret_type:
 ^ /* void - no return value */
 type

block:
 { decl_list stmt_list }

stmt_list:
 /* empty */
 stmt stmt_list

stmt:

strlang Reference 11

 block /* code block */
 expr ; /* single expression */
 < expr > block /* while(expr) block */
 [expr] block /* if(expr) block
 [expr] block ![] block /* if(expr) block else block */
 -> ; /* return; */
 -> expr; /* return expr; */

expr:
 expr binop expr /* binary operation */
 unop expr /* unary operation */
 expr ~ expr ~ expr /* search/replace */
 lvalue <- expr /* assignment */
 (expr) /* grouping */
 name (actuals_list_opt) /* function call */
 lvalue /* variable */
 number_literal /* number literal: [0-9]+ */
 string_literal /* string literal: "[^\"]*" */

lvalue:
 name /* variable */
 name [expr] /* map accessor variable */

binop: /* any of the following */
 + - * / % == != < > <= >= | &

unop: /* any of the following */
 - ! ^ @@ @%

